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Woodward’s ambiguity function measures the ability of a radar
signal to simultaneously measure the range of an object via time
delay and its velocity using Doppler shift. The ambiguity function is
a foundational staple in radar signal processing. Six myths
concerning Woodward’s ambiguity function (AF) are addressed in
this paper: 1) the AF is uniquely defined, 2) the magnitudes of the
various definitions of the AF are the same, 3) the AFs of the
baseband and corresponding radio frequency signal are the same,
4) the maximum of a correlation’s magnitude determines optimality,
and 5) multiplying a signal by a complex linear chirp rotates the AF
and 6) the AF is not invertible. Each myth is explained, analyzed,
and resolved. In discussing myth 6, the formula for inversion of the
ambiguity function to its spawning signal is derived.
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I. INTRODUCTION

Woodward’s ambiguity function, a two-dimensional
function remnant of the correlation of a transmitted and
received signal pair in both Doppler and time delay, is a sta-
ple of radar signal processing. Despite its fundamental role,
however, the ambiguity function is inconsistently treated in
the literature. The ambiguity function is defined differently
by different sources. The reason for different definitions is
not always evident. Other stated properties of the ambiguity
function in the literature are misleading. For example,
despite statements to the contrary, the ambiguity function is
directly invertible to its spawning signal to within a multi-
plicative constant phase. Likewise, the ambiguity function
of a baseband signal is not the same as when the signal is
heterodyned to a radio frequency (RF) signal. We collect
these discrepancies concerning the ambiguity function and
dub them myths. Each myth is either resolved or shown to
be inaccurate. Doing so unifies and clarifies discrepancies
in the ambiguity function seen in the literature.

The narrow band ambiguity function for monostatic
radar describes the ability of a narrow band RF waveform
g(t) to determine the range and Doppler of a target without
indeterminateness. We will use the definition [7, 11, 12,
16, 19–21, 32]:

χ(τ, u) :=
∫ ∞

−∞
g(t)g∗(t − τ )e−j2πutdt (1)

where τ and u are the range and Doppler errors relative to
the actual range and Doppler of a measured target. A
detailed tutorial on the ambiguity function is given by
Eustice et al. [10].

We have collected myths concerning the ambiguity
function from both implicit and explicit treatment in texts,
presentations, and the literature. Each of these myths is
analyzed and resolved.

II. FOUNDATIONS

A baseband signal, x(t), is bandlimited with frequency
components no greater than B Hertz. Thus,∫

t

x(t)e−j2πutdt = 0 for |u| > B. (2)

The baseband signal is expressed in terms of its in-phase
and quadrature components i(t) and q(t)

x(t) = |x(t)|ej∠x(t) = i(t) + jq(t).

The baseband signal is heterodyned into an RF signal sν(t)
with carrier frequency ν as illustrated in Fig. 1. Given the
real baseband signals i(t) and q(t) and carrier frequency ν,
the RF signal generated is

sν(t) = i(t) cos(2πνt) + q(t) sin(2πνt)

= �x(t)e−j2πνt (3)

= |x(t)| cos(2πνt − ∠x(t)).

Note that, because they are complex, the temporal signals
x(t) and x(t)e−j2πνt do not physically exist. Nevertheless,
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Fig. 1 Generation of RF signal in (3). Sin and cos can be generated by
single oscillator using 45o phase shift.

we can calculate ambiguity functions for
the complex signal g(t) = x(t) and for the real signal
g(t) = sW (t) using (1).

Properties of the ambiguity function proven in
Appendix (part A) include 1) the origin of the ambiguity
function is

χ2(0, 0) =
∫

t

|g(t)|2dt (4)

and 2) the ambiguity function magnitude at the origin is a
maximum

|χ(τ, u)| ≤ χ(0, 0). (5)

Now we address some myths about the ambiguity function
and offer resolutions.

III. MYTHS

A. Myth 1: The Ambiguity Function Is Uniquely Defined

1) The Truth: We see phrases like “The ambiguity
function . . . is defined as . . .” [8, 19, 23, 30].1 But there
are variations in the definition. Even Woodward, who first
proposed the ambiguity function, is not consistent in his
definition. In his 1953 book, using the same notation as in
(1), Woodward [33] defines his first ambiguity function as
[28, 29, 31]

χ1(τ, u) =
∫ ∞

−∞
g(t)g∗(t + τ )e−j2πutdt. (6)

Later, in 1967, Woodward opts for the noncausal and more
symmetric definition [35]2

χ2(τ, u) =
∫ ∞

−∞
g∗

(
t − τ

2

)
g

(
t + τ

2

)
e−j2πutdt, (7)

which he notes can also be written as

χ2(τ, u) = e−jπuτ

∫ ∞

−∞
g∗(t)g(t + τ )e−j2πutdt. (8)

Similar to (7) is Abramovich and Frazer’s definition [1]

χ3(τ, u) =
∫ ∞

−∞
g∗

(
t + τ

2

)
g

(
t − τ

2

)
e−j2πutdt (9)

1Some define a version of |χ | [18, 26] or |χ |2 [3, 8, 16, 27] as the
ambiguity function.
2Also used by Barbarossa et al. [4, 5] and Papoulis [24].

and the variation [6, 14, 17, 23]

χ4(τ, u) =
∫ ∞

−∞
g

(
t + τ

2

)
g∗

(
t − τ

2

)
ej2πutdt. (10)

Lastly, we have Skolnik’s definition [27]

χ5(τ, u) =
∫ ∞

−∞
g(t)g∗(t + τ )ej2πutdt. (11)

There are therefore many similarly appearing albeit
different definitions of the ambiguity function.

B. Myth 2: The Magnitudes of the Various Definitions
of the Ambiguity Function Are the Same

Myth 2 can be stated as follows: Many definitions exist
for the ambiguity function. Some of these definitions are
limited to narrowband signals [2, 29], and some of them
are the magnitude squared of other definitions [9, 13, 25].

1) The Truth: Using the hedge term “some [of these
definitions]” in this quote from Weiss [32] is technically
correct, but there are also some ambiguity function
definitions that are not equal to “the magnitude squared of
other definitions.” Including (1), we have six definitions of
the ambiguity function. From (6),

χ1(τ, u) = χ(−τ, u). (12)

Likewise, from (8) and (12),

χ2(τ, u) = e−jπuτ

[∫ ∞

−∞
g(t)g∗(t + τ )ej2πutdt

]∗

= e−jπuτ χ∗
1 (τ, −u)

= e−jπuτχ∗(−τ, −u). (13)

Similar analysis gives

χ3(τ, u) = e−jπuτχ(τ, u).

Comparing (9) and (10) reveals that

χ4(τ, u) = χ∗
3 (τ, u) = ejπuτχ∗(τ, u).

For Skolnik’s definition in (11)

χ5(τ, u) = χ(−τ, −u)

In summary, the six ambiguity functions are related by

χ(τ, u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

χ1(−τ, u)

χ∗
2 (−τ, −u)e−j2πuτ

χ3(τ, u)ejπuτ

χ∗
4 (τ, u)e−jπuτ

χ5(−τ, −u).

.

Thus,

|χ(τ, u)| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|χ1(−τ, u)|
|χ2(−τ, −u)|
|χ3(τ, u)|
|χ4(τ, u)|
|χ5(−τ, −u)|

. (14)
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These transpositional relationships are not as bad as they
look, however, because of symmetry properties of the
ambiguity function.

a) General: For an arbitrary complex signal, the
ambiguity function has the following symmetry:

χ∗(−τ, u) = χ(τ, −u)e−j2πuτ (15)

from which it follows that

|χ(−τ, u)| = |χ(τ, −u)| (16)

and, trivially, |χ(τ, u)| = |χ(−τ, −u)|. Applying the
general symmetry property to (14) reveals that

|χ(τ, u)| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|χ1(−τ, u)|
|χ2(τ, u)|
|χ3(τ, u)|
|χ4(τ, u)|
|χ5(τ, u)|

(17)

and we have equality except for Woodward’s first
ambiguity function χ1 in (6).

PROOF From the definition of the ambiguity function in
(1)

χ∗(−τ, u) =
∫ ∞

−∞
g∗(ξ )g(ξ + τ )ej2πuξdξ.

Setting t = ξ + τ gives

χ∗(−τ, u) =
∫ ∞

−∞
g∗(t − τ )g(t)ej2πu(t−τ )dt

= e−j2πuτ

∫ ∞

−∞
g(t)g∗(t − τ )ej2πutdt,

which gives the desired answer in (15).
b) For real signals: If g(t) is real, then

χ(τ, u) = χ∗(τ, −u). (18)

Thus,

|χ(τ, u)| = |χ(τ, −u)|. (19)

Therefore, when g(t) is real, the magnitude of all the
ambiguity functions thus far defined are equal

|χ(τ, u)| = |χm(τ, u)|; m = 1, 2, 3, 4, 5. (20)

Note, however, that the baseband signal x(t) used to
generate the RF signal sν (t), is generally complex and,
therefore, the universal equality in (20) does not apply to
g(t) = x(t).

PROOF When g(t) is real, g = g∗ and the ambiguity
function in (1) becomes

χ(τ, u) =
∫ ∞

−∞
g(t)g(t − τ )e−j2πutdt.

Thus,

χ∗(τ, u) =
∫ ∞

−∞
g(t)g(t − τ )ej2πutdt

from which (18) follows.

Equation (17) therefore applies, and Woodward’s first
ambiguity function is not equal to the magnitude of other
definitions.

c) A resolution: An alternative to Fig. 1 is to use –sin
instead of sin. Using the notation already established, the
baseband signal is now

x̂(t)=i(t) − jq(t)
= x∗(t)

and, in lieu of (3), we have the RF signal

ŝν(t) = i(t) cos(2πνt) − q(t) sin(2πνt)

= �x∗(t)e−j2πνt

= |x(t)| cos(2πνt + ∠x(t)).

From (1), the ambiguity function of x(t) is3

χx(τ, u) =
∫ ∞

−∞
x(t)x∗(t − τ )e−j2πutdt. (21)

Thus, for x̂(t),

χx̂(τ, u) = χx∗(τ, u)

=
∫ ∞

−∞
x∗(t)x(t − τ )e−j2πutdt

= e−j2πuτ

∫ ∞

−∞
x(ξ )x∗(ξ + τ )e−j2πuξdξ

= e−j2πuτχx(−τ, u) (22)

where we have used ξ = t – τ . Hence, using (17)

|χx̂(τ, u)| = |χx(−τ, u)|
= |χ1(τ, u)|.

Thus, the freedom to choose in each case whether the
baseband signal is modulated by sin or –sin in the
generation of the RF signal allows all of the definitions of
ambiguity function considered to have equal magnitude.
In practice, the choice of sin and –sin is inconsequential as
long as consistency in the analysis is maintained.4

C. Myth 3: The Ambiguity Function of Baseband Signals
and the Corresponding RF Signals Are the Same

Here is a mathematically correct but unrealizable
derivation that seems to support this myth. If x(t) is a
complex baseband signal and

s̃ν(t) = x(t)e−j2πνt (23)

is the RF signal centered at frequency ν, then the
ambiguity for s̃ν(t) is

3When useful, we will subscript the ambiguity function with its
corresponding function as is done here.
4For example, one can choose either a ∓ in the definition of the Fourier
transform as X(u) = ∫

t
x(t)e∓j2πut dt . Either works as long as the

inverse transform is [22] x(t) = ∫
u
X(u)e±j2πut du.
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Fig. 2 Log plots of magnitude of ambiguity function for (left) χx (τ , u) in (21) for baseband signal x(t) equal to simple pulse, and (right) ambiguity
function for RF signal in (27) using same pulse. (Negative values of log are set to zero.)

χs̃(τ, u) =
∫

t

s̃ν(t)s̃∗
ν (t − τ )e−j2πutdt

=
∫

t

(x(t)e−j2πνt )

×(x∗(t − τ )ej2πν(t−τ ))e−j2πutdt

= e−j2πντ

∫
t

x(t)x∗(t − τ )e−j2πutdt

= e−j2πντχx(τ, u) (24)

where the ambiguity of the baseband signal is given in
(21). Therefore, the magnitudes of the baseband and RF
signals are identical:

|χs̃(τ, u)| = |χx(τ, u)|.
The problem, however, is that the temporal transmitted
signal s̃ν(t) in (23) is complex and therefore does not exist.
The signal sν (t) in (3), on the other hand, is real.

1) The Truth: The ambiguity functions of the
baseband signal x(t) and real heterodyned RF signal sν(t)
differ in two ways: 1) the ambiguity function of the RF
signal contains high frequency beat terms on the u axis in
the ambiguity plane centered at twice the RF frequency
and 2) the RF ambiguity function’s baseband term is equal
to the ambiguity function of x(t) modulated in τ by a
sinusoid at the RF frequency ν. To show this, start with the
ambiguity function of the RF signal

χsν
(τ, u) =

∫
t

sν(t)s∗
ν (t − τ )e−j2πutdt.

Using the definition in (3) and

�z = 1

2
(z + z∗) (25)

gives

ψsν
(τ, u) =

∫
t

�(x(t)e−j2πνt )

×�(x(t − τ )e−j2πν(t−τ ))e−j2πutdt

= 1

4

∫
t

(x(t)e−j2πνt + x∗(t)ej2πνt )

× (x(t − τ )e−j2πν(t−τ )

+ x∗(t − τ )ej2πν(t−τ ))e−j2πutdt. (26)

The two auto terms are complex conjugate pairs. The
cross terms are also conjugate pairs. Using (25),
simplification of the FOIL terms of (26) gives

χsν
(τ, u) = 1

2
�

(
e−j2πντ

∫
t

x(t)x∗(t − τ )e−j2πutdt

)

+1

2
�

(
ej2πντ

∫
t

x(t)x(t − τ )e−j2π (u−2ν)t dt

)
or

χsν
(τ, u) = 1

2
�(e−j2πντχx(τ, u) + ej2πντψx(τ, u − 2ν)

(27)
where we define the pseudo-ambiguity function as

ψx(τ, u) =
∫

t

x(t)x(t − τ )e−j2πutdt. (28)

The pseudo-ambiguity function is similar to the ambiguity
function in (1) except there are no conjugations.

The ψx terms in (27) corresponds to a beat frequency.
On the ambiguity (τ , u) plane, the pseudo-ambiguity
function is shifted so far up and down the frequency
axes (twice the RF carrier frequency!) that there is no
overlap with the ambiguity function, which is centered at
the origin. This is illustrated in Fig. 2 for a small value of
ν where the magnitude of the ambiguity functions of x(t)
and sν(t) are shown. The higher ordered pseudo-ambiguity
functions on both sides of the ambiguity function are
apparent in the right-hand plot. For these plots, the carrier ν
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Fig. 3 Illustration of difference between finding maximum of
amplitude-modulated waveform and maximum of its envelope.

was on the same order as the bandwidth B. For RF signals,
however, the carrier ν is so large that the pseudo-ambiguity
functions are greatly separated from the baseband signal.
One never considers an unreasonably large Doppler shift
corresponding to twice the carrier frequency. The pseudo-
ambiguity function term is thus of no practical concern.

The baseband ambiguity function in (27) of interest is
the baseband (BB) component

χBB
sν

(τ, u) = 1

2
�e−j2πντχx(τ, u)

= 1

2
|χx(τ, u)|

× cos(2πντ − ∠χx(τ, u)). (29)

Even so, χBB
sν

is modulated by a sinusoid with frequency
centered about the carrier. This is illustrated in the
left-hand plot in Fig. 3 where a representation of the u = 0
slices of the ambiguity functions in Fig. 2 are plotted. For
a rectangular pulse, the cross section of the ambiguity
function of the baseband signal χ x(τ , 0) is the triangle
shown by the dashed line. The cross section of the
ambiguity function of the RF signal χBB

sν
(τ, 0) is

represented as the corresponding sinusoidal modulation in
the left-hand plot.

The ambiguity function for the RF baseband signal in
(29) oscillates. The function 1

2 |χx(τ, u)|, though, is seen to
be the envelope of χBB

sν
(τ, u).

D. Myth 4: The Maximum of a Correlation’s Magnitude
Determines the Optimal Solution

1) The Truth: The ambiguity function is a
correlation. The location of the maximum of the real part
of ambiguity function � χ(τ, u) (not |χ(τ, u)|) determines
the optimal Doppler and range. For the specific case of the
ambiguity function, these values are the same. More
deeply, however, there is logistically a difference between
the more difficult task of finding the maximum of a highly
oscillating function and identifying the maximum of the
envelope of the function. Here are the details [29, 34].

We transmit the RF signal sν(t) in (3) and receive the
signal sν−�ν(t − �t) where �ν and �t are, respectively,
the unknown Doppler shift and time delay (range) of the
target [15]. To find the unknown Doppler and range, we
compare the received signal with the family of signals
sν−u(t − τ ) for all τ and u to find the best estimates of �ν

and �t. This is easily done by finding the nearest neighbor
in the mean square error sense. The best estimate of the
Doppler and time delay �ν† and �t† are thus given by

(�t†, �ν†) = arg min
τ,u

‖sν−�ν(t − �t) − sν−u(t − τ )‖2.

(30)
Expanding (30) gives

(�t†, �ν†)

= arg min
τ,u

(
‖sν−�ν(t − �t)‖2

+ ‖sν−u(t − τ )‖2 − 2
∫

t

sν−�ν(t − �t)sν−u(t − τ )dt
)
.

(31)

The two terms containing ‖s‖2 can be simplified.
Specifically, as proven in the Appendix (part B):

a) If the carrier frequency plus or minus the Doppler
shift is large in comparison with the baseband bandwidth
B, then

|ν − �ν| > B. (32)

When this is true,

‖sν−�ν(t − �t)‖2 = 1

2
‖x(t)‖2. (33)

b) Likewise, if the search for the Doppler shift
excludes looking at frequencies near the carrier so that

|ν − u| > B,

then

‖sν−u(t − τ )‖2 = 1

2
‖x(t)‖2. (34)

Using the results in (33) and (34) then changes (31) into

(�t†, �ν†) = arg min
τ,u

(
‖x(t)‖2

−2
∫

t

sν−�ν(t − �t)sν−u(t − τ )dt
)
. (35)

The term ‖x(t)‖2 is not a functions of either τ or u and
thus plays no role in finding the minimum. Therefore (35)
can be simplified from a minimization to a maximization
problem

(�t†, �ν†) = arg max
τ,u

(∫
t

sν−�ν(t − �t)sν−u(t − τ )

)
dt.

(36)
We can simplify bookkeeping by defining

ζsν
(τ, u) :=

∫
t

sν−�ν(t − �t)sν−u(t − τ )dt (37)

so that (36) becomes

(�t†, �ν†) = arg max
τ,u

ζsν
(τ, u).

Details can be fleshed out of the inner product in (36) by
using the expressions in (3) and
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ζsν
(τ, u) =

∫
t

� (
x(t − �t)e−j2π (ν−�ν)(t−�t)

)
× � (

x(t − τ )e−j2π (ν−u)(t−τ )
)
dt.

Applying (25) gives

ζsν
(τ, u) = 1

4

∫
t

(x(t − �t)e−j2π (ν−�ν)(t−�t)

+ x∗(t − �t)ej2π (ν−�ν)(t−�t))

× (x(t − τ )e−j2π (ν−u)(t−τ )

+ x∗(t − τ )ej2π (ν−u)(t−τ ))dt. (38)

Although the expression looks formidable, it generates a
useful and interesting result. The auto products in (38) are
complex conjugate pairs as are the cross products. Using
(25) again, we get

ζsν
(τ, u) = 1

2
�

[
e−j2π (ν−u)(τ−�t)

×
∫

ξ

x(ξ )x∗(ξ − (τ − �t))e−j2πξ (u−�ν)dξ
]

+1

2
�

[
ej2π (ν−u)(τ−�t)

×
∫

ξ

x(ξ )x(ξ − (τ − �t))

×e−j2πξ (2ν−(u−�ν))dξ
]

where we have set ξ = t – �t. This expression can be
written in terms of the ambiguity function χ x and the
pseudo-ambiguity function ψx of the signal x as

ζsν
(τ, u) = 1

2
� [

e−j2π (ν−u)(τ−�t)χx(τ − �t, u − �ν)
]

+1

2
� [

ej2π (ν−u)(τ−�t)

×ψx(τ − �t, 2ν − (u − �ν))] . (39)

This relation is akin to the ambiguity function for the RF
signal in (27). The pseudo-ambiguity function ψx is
shifted on the ambiguity plane on the u axis to be roughly
centered at twice the carrier frequency ν. It can therefore
be ignored because the Doppler shift being sought will not
be in that region. The remaining baseband expression is

ζBB
sν

(τ, u)

:=
[∫

t

sν−�ν(t − �t)sν−u(t − τ )dt

]
BB

= 1

2
� [

e−j2π (ν−u)(τ−�t)χx(τ − �t, u − �ν)
]
. (40)

= 1

2
|χx(τ − �t, u − �ν)|

× cos(2π(ν − u)(τ − �t) − ∠χx(τ − �t, u − �ν)).

(41)

Keeping the search on the ambiguity plane only within the
baseband region, (37) becomes

(�t†, �ν†) = arg max
τ,u

ζ BB
sν

(τ, u) (42)

Fig. 4 Correlation for all range values τ and all Doppler shifts u gives
matched filter output that peaks at target’s true range �t and Doppler �ν.

Shown here are results of two cases, (τ , u) = (�t1, �ν1) and (τ , u) =
(�t2, �ν2). Independent of measured range and Doppler, function

centered around measured values always has same shape. This invariant
shape, when shifted to origin, is ambiguity function. Shape of ambiguity

function is determined solely by transmitted signal.

Because | cos | ≤ 1,

|ζBB
sν

(τ, u)| ≤ 1

2
|χx(τ − �t, u − �ν)| .

Indeed, |ζBB
sν

(τ, u)| is the envelope of
1
2 |χx(τ − �t, u − �ν)|. From (40), we have equality at

ζBB
sν

(�t, �ν) = 1

2
�χx(0, 0) = 1

2
‖g(t)‖

which we know from (5) is the maximum value of |χx |.
Because | cos | ≤ 1, the solution to (42) is the obvious one

(�t†, �ν†) = (�t, �ν).

We have two takeaways:

1) Maximizing the oscillatory function in (41) turns
out to be the same as maximizing its envelope. This is
illustrated in the left-hand plot in Fig. 3 where a
representation of the u = 0 slices of the ambiguity
functions in Fig. 2 are plotted. For a rectangular pulse, the
cross section of the ambiguity function of the baseband
signal is the triangle shown by the dashed line. The
maximum of the triangular signal, as marked by the dot, is
the same as the maximum of the oscillating ambiguity
function of the RF signal. Although exact for the
ambiguity function as a consequence of (5), estimating the
maximum of the envelope of an oscillatory signal is a
good approximation to maximizing the oscillation as is
illustrated in by the right-hand plot in Fig. 3. The
maximum of the oscillation is marked by a dot just to the
right and just below the dot marking the maximum of the
envelope. For high frequency oscillations, the location of
both points are nearly identical.

2) As seen in Fig. 4, the (modulated) ambiguity
function in (41) is always centered at the optimal solution
(�t, �ν). The shape around the centered function is
independent of the measured range and Doppler.
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Fig. 5 Illustration of effect on ambiguity function by chirping. Ellipse
labeled “original” corresponds to contour of ambiguity function of

Gaussian pulse. Common equation for ellipse is (τ/a)2 + (u/b)2 = 1.

Rotated ellipse is congruent to original. Scaled version of ellipse in (43)
becomes (τ/a)2 + ((u − ατ )/b)2 = 1. Although still ellipse, there is

marked difference with rotated version.

E. Myth 5: Multiplying a Signal by a Complex Linear
Chirp Rotates the Ambiguity Function

1) The Truth: Multiplying a signal by a complex chirp
imposes a frequency dependent shift of the ambiguity
function that can resemble a rotation. This can be easily
shown. If g(t) has an ambiguity function of χ x (τ , u), then
g(t)e−jπαt2

has a corresponding ambiguity function of

χy(τ, u) =
∫

t

(
g(t)e−j2παt2

)
×

(
g∗(t − τ )ejπα(t−τ )2

)
ej2πutdt

= e−jπατ 2
∫

t

g(t)g∗(t − τ )ej2π (u−ατ )t dt

= e−jπατ 2
χx(τ, u − ατ ) (43)

Thus, |χy(τ, u)| = |χx(τ, u − ατ )| and, as illustrated in
Fig. 5, the ambiguity function is shifted rather than
rotated. See the caption for details.

F. Myth 6: The Ambiguity Function Is Not Invertible

“Unfortunately, no analytic method exists for
calculating a signal given its ambiguity function (inverse
ambiguity transform); thus the design of a radar signal
with desirable characteristics of the ambiguity function is
based primarily on the radar designer’s prior knowledge of
radar waveforms and his or her expertise in such designs.”
[18]

1) The Truth: This myth is strictly true in the sense
that

• g(t) will have the same ambiguity function as

f (t) = ejφg(t) (44)

when φ is a real constant because, with reference to (1),
g(t)g∗(t − τ ) = f (t)f ∗(t − τ ) and

• an inversion is not immediate evident when given
only the magnitude |χ(τ, u)|.

Levanon and Mozeson [18], whom we quoted above,
define the ambiguity function as the magnitude of
Skolnik’s definition in (11). Given the ambiguity in (1),
g(t) can be found to within a constant phase term as in (44)
where

g(t) =
√

χ(0, 0)∫
τ
| ∫

ν
χ∗(−τ, ν)dν|2dτ

∫
u

χ∗(−t, u)du. (45)

The proof is provided in Appendix (part C).

IV. CONCLUSIONS

Using analysis built on fundamental foundations, six
myths about Woodward’s ambiguity function, of varying
significance, have been successfully analyzed and
resolved.

APPENDIX:

A. Some Elementary Properties of the Ambiguity
Function

1) Proof of (4): This follows immediately from the
definition of ambiguity function in (1).

2) Proof of (5): Using the Schwartz inequality and
(4) gives

|χ(τ, u)|2 =
∣∣∣∣
∫

t

g(t)g∗(T − τ )e−j2πutdt

∣∣∣∣
2

≤
∫

t

|g(t)|2dt

∫
t

∣∣g∗(T − τ )e−j2πut
∣∣2

dt

= ‖g(t)‖2

= |χ(0, 0)|2.

B. Proof of (33) and (34)

Expanding (33) gives

‖sν−�ν(t − �t)‖2 =
∫

t

|sν−�ν(t − �t)|2 dt.

Because the centering of the integrand does not affect the
integration result

‖sν−�ν(t − �t)‖2 =
∫

t

|sν−�ν(t)|2dt.

Using (3) and a trigonometry identity gives

‖sν−�ν(t − �t)‖2

=
∫

t

(|x(t)| cos(2π(ν − �ν)t − ∠x(t)))2.dt

= 1

2

∫
t

|x(t)|2 1

2
(1 + cos((4π(ν − �ν)t − 2∠x(t))). dt

= 1

2
‖x(t)‖2+1

2

∫
t

|x(t)|2 cos((4π(ν−�ν)t−2∠x(t)))dt

= 1

2
‖x(t)‖2 + 1

2
�

∫
t

(
|x(t)|ej∠x(t)

)2
e−j4π (ν−�ν)t dt

= 1

2
‖x(t)‖2 1

2
�

∫
t

x2(t)e−j4π (ν−�ν)t dt . (46)
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Because g(t) is bandlimitied with bandwidth B as defined
in (2), we are assured that∫

t

x2(t)e−j2πutdt = 0 for |u| > 2B. (47)

It follows that the integral in (46) has the property that∫
t

x2(t)e−j4π (ν−�ν)t dt = 0 for |ν − �ν| > B.

Note that the condition |ν − �ν| > B is identical to the
criterion in (32) and that, because the second term in (46)
is zero, we have proven (33).

The proof of (34) follows the same steps.

C. Proof of the Ambiguity Function Inverse in (45)

For a fixed τ , the ambiguity function in (1) is a simple
one-dimensional Fourier transform that can be inverted as

g(t)g∗(t − τ ) =
∫ ∞

−∞
χ(τ, u)ej2πutdu. (48)

Setting t = 0, and conjugating gives

g∗(0)g(−τ ) =
∫ ∞

−∞
χ∗(τ, u)du

or

g(τ ) =
∫ ∞
−∞ χ∗(−τ, u)du

g∗(0)
. (49)

Given χ(τ , u), it is therefore possible to regain g(t) to
within a multiplicative g*(0)5. We now show we can
evaluate g*(0) to within a constant phase term ejα

.

Equation (49) can be interpreted as

h(τ ) := Cg(τ ) =
∫ ∞

−∞
χ∗(−τ, u)du (50)

where h(·) and χ(τ , u) are known and C 	= 0 is an
unknown constant. (For our derivation, C = g*(0) but this
is not important for the analysis to follow.) From the
definition of the ambiguity function in (1), it follows that

χ(0, 0) = Eg

where a signal’s energy is

Eg =
∫ ∞

−∞
|g(t)|2dt.

Because χ is known, so is χ(0, 0) = Eg. From (50),∫ ∞

−∞
|h(t)|2dt = |C|2

∫ ∞

−∞
|g(t)|2dt

or equivalently,

Eh = |C|2Eg = |C|2χ(0, 0).

55Equation (49) can be interpreted as a scaled projection of the ambiguity
function onto τ . The procedure does not work if g(0) = 0. The expression
in (48), though, can be evaluated at other values of t. For example, if t =
1, (48) becomes g(1)g* (1 – τ ) from which we can find g(t) to within a
proportionality constant. Alternately, the projection of the ambiguity
onto u gives the Fourier transform of g scaled by G(0) = ∫

tg(t)dt [10].

Because h(t) is known, so is Eh, and we conclude the
unknown scaling constant is

|C|2 = Eh

χ(0, 0)
.

Thus, for φ an arbitrary real constant

C = ejφ

√
Eh

χ(0, 0)
. (51)

Then

g(t) =
√

χ(0, 0)

Eh

∫ ∞

u=−∞
χ∗(−t, u)du.

The inversion in (45) then follows from (49) and (51) for
C = g*(0). A similar analysis can be applied to the
inversion of the other of ambiguity function definitions
χm(τ , u), m = 1, 2, 3, 4, 5.
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